SYNTHESIS OF 2,4-DIMETHYLHEPTALENE-3,8-DIONE

Kazuo KATO,* Mitsunori ODA,* Shigeyasu KURODA,**#

Noboru MORITA,** and Toyonobu ASAO**‡

- * Department of Chemistry, Faculty of Science, Tohoku University, Aramaki, Aoba, Sendai 980
- ** Department of Chemistry, College of General Education, Tohoku University, Kawauchi, Sendai 980

Title compound $(\underline{5})$ has been synthesized starting from [4,5-c] furotropone, and its physical properties were discussed in connection with heptalenium cations.

Recently, we have reported the synthesis of methoxy derivatives of heptalene-3,6- and -3,8-diones, and the formation of dihydroxyheptalenium dications in a strong acidic medium. 1 However, their 1 H-NMR spectra in CDCl $_{3}$ or in FSO $_{3}$ H showed complex patterns and we could not assign all signals.

In this paper, 2,4-dimethylheptalene-3,8-dione having a symmetrical plane was synthesized and its spectroscopic data were discussed in connection with heptalenium cations.

Reaction of [4,5-c] furotropone $(\underline{1})^2$ with 2,4-dibromo-3-pentanone $(\underline{2})$ in the presence of copper and KI³) in anhydrous CH₃CN at 60°C afforded an adduct $(\underline{3})$ in 30% yield, pale yellow sticks, mp 153~155°C. When the reaction was carried out in hydrous CH₃CN, an adduct $(\underline{4})$ formally formed by hydrolysis of $(\underline{3})$ was isolated in 8% yield, pale yellow sticks, mp 151~153°C. 4

The reaction of $(\underline{1})$ and 1,3-dibromo-2-propanone or 1,1,3,3-tetrabromo-2-propanone in the presence of Cu-KI or Fe₂(CO)_Q⁵⁾ gave neither cycloheptatropone skeleton nor any other clear products.

The treatment of $(\underline{3})$ with FSO $_3$ H at room temperature followed with NaHCO $_3$ afforded 2,4-dimethylheptalene-3,8-dione $(\underline{5})$ in 90% yield, pale yellow microneedles, mp 230~231°C, M $^+$ 212, IR (KBr) 1642, 1600 cm $^{-1}$. The compound $(\underline{5})$ was also obtained by the treatment of $(\underline{3})$ with BBr $_3$ at -50°C in 17% yield. Electronic and 1 H-NMR spectra of $(\underline{5})$ in neutral and acidic media are shown in Table 1. The electronic spectrum of $(\underline{5})$ in conc H $_2$ SO $_4$ (or in FSO $_3$ H) shows a fine structure and slight batho-

Electronic Spectra; nm (log ϵ)			¹ H-NMR Spectra; ppm, J in Hz		
in MeOH*	in conc H ₂ SO ₄	in CF ₃ COOH	in DMSO-d ₆	in FSO ₃ H**	in CF ₃ COOD
267 (4.74) 276 (4.89) 295 (4.14) 350 (3.93)sh 368 (4.01) 385 (3.94)sh 407 (3.51)sh	282 (4.66) 296 (4.89) 310 (4.44) 333 (3.65) 351 (3.87) 360 (3.78) 380 (3.98) 402 (4.02)	272 (4.82) 306 (4.54) 376 (4.13) 395 (4.10)sh	2.27 (s, CH ₃) 6.78 (d, J=12, Hc) 7.49 (d, J=12, Hb) 7.73 (s, Ha)	3.18 (s, CH ₃) 8.35 (d, J=12, Hc) 9.30 (d, J=12, Hb) 9.49 (s, Ha)	Hc)

Table 1. Electronic and NMR Spectra of $(\underline{5})$

chromic shifts compared with that in MeOH. The 1 H-NMR signals of $(\underline{5})$ in FSO $_3$ H (or in D $_2$ SO $_4$) largely shift to downfield compared with those in DMSO-d $_6$. If the downfield shifts are due to two extra positive charges introduced by protonations, these shifts may be proportional to the change of the mean π -charge density per carbon atom and are evaluated as $\Delta\delta$ = 1.77 ppm for ring protons. 1,6) The mean value of the differences between the chemical shifts of ring protons in DMSO-d $_6$ and in FSO $_3$ H is 1.75 ppm. Therefore, the dione $(\underline{5})$ must exist as the corresponding dihydroxyheptalenium dication $(\underline{6})$ in FSO $_3$ H or in conc H $_2$ SO $_4$.

The electronic spectrum in CF_3COOH is similar to that in MeOH, although slight bathochromic shifts and increase extinction coefficients of the maxima at around 300 and 370 nm are observed. The NMR in CF_3COOD shows that Hb and Hc signals shift to downfield in the value of 1.06 and 1.15 ppm, respectively, compared with those in DMSO-d₆, however, Ha and methyl signals shift only 0.44 and 0.42 ppm, respectively. It is assumed that these data indicate the dione ($\underline{5}$) exists as a monocation such as ($\underline{7}$) in CF_3COOH .

References and Notes

- ‡ To whom all correspondences should be addressed.
- # Present Address; Department of Industrial Chemistry, Faculty of Engineering, Toyama University, Takaoka, 933.
- 1) S. Kuroda and T. Asao, Tetrahedron Lett., 289 (1977).
- 2) M. J. Cook and E. J. Forbes, Tetrahedron, 24, 4501 (1968).
- 3) H. M. R. Hoffmann, Angew. Chem., Intern. Ed., $\underline{12}$, 819 (1973); G. Fierz, R. Chidgey, and H. M. R. Hoffmann, ibid., $\underline{13}$, 410 (1974).
- 4) Only one stereoisomer was isolated, and the stereochemistry was assigned from the Couplig constants of the NMR. (3); M+ 230, IR (KBr) 1704, 1623, 1565 cm⁻¹, λ max (MeOH) 233 nm (log ϵ 4.30), 314 (3.98)sh, 373 (4.00), NMR (CDCl₃) δ 1.05 ppm (d, J=7, 2CH₃), 3.07 (d,q, J=5, 7, 2H), 5.06 (d, J=5, 2H), 6.92 (s, 4H). (4); M+ 248, IR (KBr) 2880, 1710, 1694, 1661 cm⁻¹, λ max (MeOH) 217 (3.82), 292 (4.32), NMR (CDCl₃) δ 0.96 (d, J=6, CH₃), 1.03 (d, J=6, CH₃), 2.37 (s, CH₃), 3.08 (d,t, J=5, 6, 2H), 5.22 (d, J=5, 1H), 5.27 (d, J=5, 1H), 6.31 (d, J=16, 1H), 7.75 (d, J=16, 1H), 10.16 (s, CHO).
- 5) R. Noyori in "Transition Metal Organometallics in Organic Synthesis," Vol. 1, ed. by H. Alper, Acadimic Press, New York, 1976, p 133; H. Takaya, S. Makino, Y. Hayakawa, and R. Noyori, J. Am. Chem. Soc., 100, 1765, 1778 (1978), and references cited therein.
- 6) H. Spiesecke and W. G. Schneider, Tetrahedron Lett., 468 (1961); P. J. Garratt and M. V. Sergent in "Nonbenzenoid Aromatics," Vol. II, ed. by J. P. Snyder, Academic Press, New York, 1971, p 241.

^{*} The same spectrum was obtained in CH_2Cl_2 . ** The same spectrum was obtained in conc D_2SO_4 .